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Understanding the Patterns in the BZ Reagent 

P a u l  C. F i f e  I 

1. THE P H E N O M E N O N  

One of the more intriguing disoveries in chemical physics during the last 20 
years was that of mobile patterns in the Belousov Zhabotinsky 
reagent. (35'36"38'41-43) Foremost among these patterns are the expanding 
rings and rotating spirals often seen in thin layers of the mixture. It is felt 
that these structures, seen and studied so easily for this particular type of 
reactive medium, are in fact representative of quite wide-ranging 
phenomena in complex diffusive systems. Their prevalence has been sur- 
mised from the results of numerical experiments on various models, as well 
as from rigorous and formal mathematical results obtained for the simplest 
of the models.(1.11"12'14'15,19-24'26,37 ) The possibility that they reflect analogous 
phenomena in physiology has been suggested many times; there is 
experimental evidence of spirals in cardiac tissue, and there are theories to 
the effect that these spirals are connected with heart pathologies. (16,39) 

All of this has stimulated the desire to understand the basic 
mechanism behind the observed dynamic patterns. (An even more fun- 
damental exotic phenomenon is the tendency of the BZ reagent, even if well 
stirred, to oscillate in its chemical composition. It is clear, for example from 
the analysis presented below, that there is a close connection between 
oscillatory behavior and pattern-forming behavior, but the emphasis in this 
paper will be on the latter.) Since the BZ reagent is probably the simplest 
system supporting spatial patterns which can be studied in the laboratory, 
the first logical step was to understand them in that context. And, of 
course, the first part of that first step was to understand the chemical reac- 
tions taking place in the reagent. The chemistry is indeed complex, but by 
now the specific reactions which occur are fairly well known. (2-4"31) There is 
still much to be learned about the rates of these reactions, however. 
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In this paper I wish to outline briefly the steps which have led from 
basic knowledge about the chemistry to our present understanding of the 
mechanism behind ring and spiral patterns in the BZ reagent. These steps 
involve chemical modeling, mathematical modeling, and finally 
mathematical analysis. The process generally has been passage from com- 
plicated models to simpler ones by use of insight into the total chemical 
mechanism and by formal asymptotic analysis. My emphasis will be on the 
mathematical aspects of these processes. The end result has been models 
which retain the features mainly responsible for the appearance of the 
phenomena in question, and yet are simple enough that their analysis is 
straightforward and no longer obscure. 

See Refs. 9 and 10 for further discussions of most of the material 
presented here. 

2. O R E G O N A T O R  M O D E L S  

A satisfactory picture of the chemistry has been obtained by careful 
experimentation, mainly by Noyes and various coworkers. (2/ Once this 
knowledge had reached a high enough level, it was possible to characterize 
the essential features of the total reaction mechanism by a much simpler 
caricature or skeleton mechanism, which, it was proposed, would have the 
same qualitative dynamics as the real mechanism. The simplified proposed 
mechanism was named the Oregonator (41 and consists of a few reactions 
among three chemical species with variable concentrations. This reduction 
was a major step toward our understanding, because the mathematics of 
the Oregonator model is easier both to do and to comprehend. 

Credence in the Oregonator skeleton was bolstered by its ability to 
reflect most of the exotic features observed in the lab, and moreover by the 
demonstration by Tyson (33) that it could be derived in a systematic way 
from larger more realistic systems. Nevertheless, there have recently been 
alternatives to the Oregonator proposed (29'3~ on the basis of chemical con- 
siderations. As far as accounting for the phenomena of interest to us here, 
all these alternative models, together with the original Oregonator, do 
equally good jobs in reproducing spatial patterns. Therefore I shall not 
mention their differences further. 

Mathematically, the dynamics of a well-stirred Oregonator reagent 
would be described by a set of three nonlinear ordinary differential 
equations. The spatiotemporal behavior of an unstirred layer of this 
reagent would be described by these same differential equations, with 
added diffusion terms in the form of spatial Laplacian operators acting on 
the concentration variables. Thus, one arrives at a system of three non- 
linear reaction~tiffusion equations. 



Understanding the Patterns in the BZ Reagent 689 

3. PC SYSTEMS 

In the Oregonator differential equations and reaction diffusion 
equations described above, there appear a number of parameters 
representing various combinations of rate constants. These parameters are 
not completely known and may vary according to the specific recipe used 
in making the reagent. However, it is clear that one should expect them to 
have different orders of magnitude; and under certain realistic order of 
magnitude assumptions, it was shown by Tyson (32) that these equations 
can be further simplified by invoking a pseudo-steady-state hypothesis. 
What this hypothesis amounts to is a rescaling of the three unknown 
functions (the concentrations of the reactants), in terms of the parameters 
mentioned, in a way dictated to some extent by the nature of the equations. 
This rescaling exhibits the typical orders of magnitude of the three concen- 
trations. One of them turns out to be much smaller than the other two; this 
leads to a steadystate approximation, which essentially says that the rate of 
production of this small species is also small, and can for purposes of the 
approximation be set equal to zero. Setting it equal to zero yields an 
algebraic equation which can be solved for this small rescaled variable in 
terms of the other two. In this way, the system of three equations is 
reduced to two. 

This reduced system of two reaction-diffusion equations has, in a cer- 
tain realistic parameter range, the form of what I have called a 
"propagator-controller" (PC) system. A (chemical) PC system is defined as 
a reacting and diffusing system which supports wave fronts in some 
chemical species (the propagator species), the velocity and wave forms of 
these fronts being modulated by the concentrations of other species (the 
controller species). In the reduced Oregonator system, there is only one 
propagator and one controller. The former is HBrO2 (its concentration will 
be denoted by u below) and the latter is a cerium ion in its oxidixed state 
(its concentration will be denoted by v). 

The system has a sigmoidal nonlinearity and a small parameter e~0:  

u~ = ~Ju + I f ( u ,  v) ( l )  
g 

v, = ear  + g(u, v) (2) 

where the nullcline f ( u ,  v) = 0 has the following shape in the u-v  plane: 
To see that this is in fact a propagato~controller system, observe that 

its lowest-order formal approximation is 

f ( u ,  v) = 0 (3) 

v, = g(u, v) (4) 
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As long as v lies in the interval _v < v < 15, (3) can be solved for u as a 
function of v in three ways, represented by the three branches in the 
nullcline shown in Fig. 1. The middle branch is unstable with respect to the 
kinetic equations and will be excluded from consideration on that basis; 
but the other two are feasible and will be represented by 

u=h+(v) (5) 

which replaces (3). Solutions of (4) and (5) with u discontinuous may exist, 
the points of discontinuity representing transition points where the relation 
between u and v switches between the + relation in (5) and the - relation. 

It will be assumed that v is continuous. In fact, if, at time t = 0, u and v 
are both continuous in space, it can be seen easily from (4) that v will 
remain continuous, but that u may become discontinuous by being "forced 
off the upper or lower knee" of the nullcline in Fig. 1. 

So at any one instant of time, space will be divided into a region 
[2+(t), in which + holds in (5), and f2 (t), where - holds. Suppose the 
boundary between these two regions is smooth with curvature not large, 
i.e., small compared to 1/e. Then a fine-structure analysis of the original 
system (1), (2) near the bounda ry  (6'7'9y) actually shows that the boundary 
must migrate, its normal velocity c being an O(1) quantity depending only 
on the value of v at that point: 

c = c ( v )  (6) 

These moving curves of discontinuity in u will represent very steep 
traveling fronts, and so u plays the role of the propagator variable. The 

v !  

= o 

Fig. 1 
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fronts' velocities (and their fine-structure profile as well) are modulated by 
the controller variable v through the relation (6). 

4. S O L I T A R Y  P U L S E S  

Of course, the dynamics of these pattern-forming fronts will depend 
very much on the nature of the function g appearing in (2) and (4). Sup- 
pose now that g = 0 along a curve intersecting the f-nullcline as shown in 
Fig. 2, and that g has the signs shown in that same figure. Then the point 
(Uo, v0) of intersection will be a stable rest state. 

Consider a one-dimensional medium of infinite extent, and impose 
initial data u(x, 0), v(x, 0) such that u = Uo and v = Vo everywhere except on 
a finite interval of the x axis. Suppose also that in this finite interval, this 
pair of initial data traces a curve in the u-v plane (with x as parameter on 
the curve) which makes an excursion past the middle branch, as depicted in 
Fig. 2 (curved dotted line). Then on a time scale O(e), the two branches 
h+(v) will attract the portions of the initial curve which are nearest to 
them, and two steep fronts will form at the two values of v corresponding 
to the two points where the initial curve crosses the middle branch of the 
nullcline. These fronts will move according to their intrinsic trigger velocity 
(6), and moreover the one with the larger value of v may become transfor- 
med into a phase front, (9'25'34) when the value of v on the front attains the 
upper limit ~. This process of formation is also explained in Ref. 8; similar 
processes were described in Refs. 27 and 28. 

As time passes, the two fronts will attain approximately the same 
velocity, either to the right or to the left, and the total configuration will 
resemble a somewhat flat-topped pulse. The leading front in this pulse will 
represent a transition from the minus ( - )  to the plus ( + )  state when 

,,.o_ 

(~JO,, Vo ) 

= O  

V I 

Fig. 2 
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v =v  0. This transition is depicted by the lower horizontal dotted line in 
Fig. 2. The trailing front, which could be called a "back", ~34) is really a 
"phase" front because it does not move with trigger velocity c(v), but 
rather its trajectory is determined as the curve in the x - t  plane where 
v(x, t )=  f. It is depicted by the upper dotted line in Fig. 2. 

5. RING PATTERNS 

Two-dimensional analogs of the solitary pulses described above exist 
in the form of straight bands propagating in one direction (normal to the 
band) in space (really a one-dimensional phenomenon) or solitary circular 
bands propagating outward. As long as their curvature is small compared 
with l/e, the latter's motion along a given ray from the origin can be 
visualized and analyzed, to lowest order, the same way as the straight 
bands. Furthermore, if there is some mechanism at one point in this 
medium for the periodic generation of new bands, then there may result an 
unending succession of them. Such a mechanism apparently occurs in the 
BZ reagent, because the expanding ring (target) patterns commonly seen 
therein fit this description. 

Two general mechanisms for the constant production of waves at the 
center have been proposed. The first, which undoubtedly occurs 
predominantly if not always, is the action of some inhomogeneity at the 
center causing the chemistry to change in a neighborhood of that point. 
This could be reflected in a change in the rate constants of the various reac- 
tions in the Oregonator model, so that they could in fact depend on 
position, assuming different values near the center from their values far 
away from it. Such a change in the rate constants could very well cause a 
shift in the relative positions of the f and the g nullclines from the con- 
figuration in Fig. 2 that in Fig. 3. In the latter, the intersection is on the 
unstable middle branch, and the diffusionless equations (1) and (2) with 
the Laplacian terms on the right omitted have solutions of relaxation 
oscillator type. 

In this scenario, the medium could therefore be characterized as being 
oscillatory near the center, and as possessing a stable (but excitable) rest 
state outside of that central region. It is intuitively suggestive that such an 
inhomogeneous center may result in the production of a series of 
expanding rings, and in fact this production mechanism is verified and 
examined in great detail in Ref. 34. 

The other type of mechanism proposed for the appearance of target 
patterns does not involve the presence of external inhomogeneities, but 
rather relies on the intrinsic properties of the reaction mechanism and the 
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Fig. 3 

w 

q 

diffusion of the species. For this to be possible, three equations rather than 
two are needed. One such system of three equations, not derived from any 
known chemical model, was suggested by Zaikin and Kawczynski, (4~ and 
some numerical computations were done using that model. Models capable 
of similar effects were suggested in later papers by one of the those same 
authors. (17'1s) In Ref. 5 I presented a model in which the reduced 
Oregonator PC system used in Ref. 34 was supplemented by a third very 
simple hypothetical equation involving slow reactions and a third chemical 
species. It was shown by asymptotic analysis, together with a stability 
argument that such a system was capable of producing inhomogeneous- 
center patterns. (Of course there has to be some inhomogeneity in the 
initial concentrations of the reactants for leading centers to arise.) 

6. T H E  B I R T H  OF S P I R A L S  

Some thought has been given to the process by which spirals can arise 
in an excitable medium. For example, a simple distributed dynamical 
system with three states at each (discrete) point in space-time was 
proposed and considered in Ref. 13. A close examination of this system 
elucidates to some extent the reason for spirals forming in that context. 

In the context of PC models, such as (1), (2), a thought experiment 
was suggested in Ref. 9. The thought experiment involves a propagating 
straight (or circular) band pulse in a two-dimensional medium, as 
described in Section 4. If such a band is disturbed by, for example, 
physically mixing the chemicals in some region overlapping with a finite 

822/39/5-6-16 
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segment of the band, then the pulselike structure is momentarily disturbed 
in that region. However, very soon at each point of the disturbed region 
the state vector (u, v) will be attracted to whichever branch of (5) it hap- 
pens to be in the basin of attraction of. So in fact soon after the mixing, 
space will again be partitioned into two regions ~2_+. Outside the disturbed 
region, of course, g2 + will simply be the flat-topped interior of the traveling 
pulse and (2_ will be everything else. It may well happen that the new con- 
figuration will be such that ~2+ is no longer connected, but rather 
something as in Fig. 4. We assume that it has two connected components 
as shown. 

Given such a readjusted configuration, one can now trace the 
movement of the boundaries between the two regions by using the law (6) 
to govern their normal velocity at each point, together with (4) and (5) to 
determine the evolution of the controller variable v. Most of the following 
aspects of this subsequent evolution process were brought out in Ref. 9. 

Since v = v0 on the forward side of the moving pulse and v = ~ on the 
aft side, and v is continuous along the boundary of each component, there 
will be a point P on each boundary at which v = v*, where v* is the point 
at which c (v*)=0 .  It is characterized by the "equal-area" rule: 
~h+(v*) h (v*) f (  u, V*)du=O. Initially, this point serves as a pivot point about 
which the interface rotates as shown in Fig. 4. This rotation causes an 
asymmetry in what may well have been a symmetric initial configuration as 
in that figure. 

The consequences of continuing with the reduced model (4)-(6) will 
now be described. Because the portion of the interface segment near P 
where v > v *  rotates into ~2+, where g > 0 ,  it follows from (4) that v 
increases at a rate which is O(1) on that portion. This increase in v induces, 
through (6), a corresponding increase in the normal velocity of that 
segment. This means that arbitrarily close to P, the interface will soon 
develop a velocity which is bounded away from zero, as well as values of v 
bounded away from v*. The same is true on the portion of the interface 
near P where v < 0, but the normal velocity in that case is in the opposite 
direction (though the angular velocity is in the same direction). Therefore 

T % 

.J'l. § 

Fig. 4 
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the angular velocity of this segment near P becomes unbounded, and v 
becomes discontinuous. Moreover, the curvature of the interface also 
becomes unbounded. This violates the original hypothesis, used in forming 

t h e  model, that the curvature is small compared to 1/e. That reduction 
therefore may no longer be used near the pivot point P. The fact is that 
part of the reduction was to neglect the diffusion term in (2), supposing 
that there is no mechanism for the function v to develop large gradients. 
Such a mechanism has now appeared, and any further analysis near P must 
take that term into consideration; it will have the effect of smoothing out 
the discontinuity in v tempering the unbounded growth in angular velocity. 

Irrespective of the analysis near P, which has not been done and 
would require some kind of rescaling, the quality of the motion of the inter- 
face in regions away from P can be gleaned by continuing the thought 
experiment. The pivot point P remains more or less stationary, the inter- 
face more or less rotating around it, while far away from it, the semiinfinite 
strip which is ~ +  continues to act like a pulse, propagating upwards at 
constant velocity. 

The effect of these two dynamical properties is to create rotating cen- 
ters, which are more or less fixed, connected to unidirectional pulses. The 
rotating center winds the region ~ +  into spiral-shaped strips which gain 
one more loop after each rotation (Fig. 5). 

_ _  T 

_n._  

Fig. 5 

n4 

#e 

(symmetric) 
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Locally, the spiral arm looks like a relatively (compared to the 
undisturbed pulse) thin pulse propagating outward. Eventually, the spiral 
interface between g2+ and g2_ will be very long. On that interface, the 
function v will still vary continuously from the value ~ to v0, as it did 
originally. This means that along most of this boundary, v will have a very 
small gradient in the tangential direction. 

7. DEVELOPED SPIRALS 

Now let us suppose that a long time has elapsed, so that the spiral 
structure has developed a large number of loops and is rotating at a con- 
stant angular velocity. I shall try to show that this developed spiral cannot 
have uniform characteristic spatial dimensions (say, the typical width of the 
spiraling band), unless this characteristic dimension is smaller than that of 
the original pulse. 

Suppose that the characteristic length were O(1), so that the curvature 
of the interface is also uniformly O(1). Now fix attention on some point Q 
at a positive distance r from the center, and let the spiral rotate past that 
point. During one rotation of the spiral, the point Q will be in (2+ some 
amount of time T+,  and in ~ _  the amount  of time T . These two times 
add up to T, the period of the rotation, which of course is independent of r. 
The individual times may depend somewhat on r, but neither is very small 
relative to T. 

It may be assumed that the function g, which does not depend on e, is 
such that g(h+ (v), v) is bounded away from 0 for v on the interface, as long 
as v does not stray too far from the value v*. This function is positive when 
the + sign is taken, and negative when the - sign is taken. In view of (4), 
one sees that the function v(Q, t) increases at a nonzero rate during the 
time interval T+,  and decreases at a nonzero rate during the interval T . 
Since these rates are bounded away from 0, it follows that the total 
variation of v during one period is O(T). Its maximum and minimum are 
attained at the interface itself. 

By (6), the normal velocity of the fronts will also be of this same order. 
But this velocity is, in order of magnitude, equal to the characteristic nor- 
mal spacing between the loops [assumed to be O(1)] divided by the 
characteristic time T, so one obtains T =  O(1/T), or T =  O(1). Hence the 
value of v on the interface is such that v -  v * =  O(1 ), uniformly in r, and v 
cannot smoothly approach the value v* at the center. 

It follows either that the developed spiral must be described by at least 
two different space scales, or by a uniform scale not equal to O(1). In the 
latter case, the scale could not be larger than that of the solitary pulse, 
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which is O(1), so the scale would have to be ~ 1. Exploring the possibility 
of a small uniform spatial scale, one finds that scaling space by the factor 
6 2 - e  2/3 leads to a reasonable problem for the fully developed spiral, 
provided that time is scaled by the factor 6. {m) I shall outline how the 
argument proceeds. 

A free boundary problem is found for the determination of the shape 
of the interface, in these scaled coordinates, and the function v. It happens 
that v differs from v* by a small amount of order 6 - e~/3. In that range, the 
function g(h+ (v), v) is approximately constant, of the same sign as the sub- 
script of h, so for simplicity this function can be taken to be _+ 1. It is also 
convenient to reposition the origin on the v axis to be at v*, so replace v by 
v*+v. Finally, simplicity again suggests making f symmetric: 
f ( - u , - v ) = - f ( u , v ) ,  l i t  follows from this that h - ( 0 ) = - h + ( 0 )  
(Fig. 6).] 

Now make the scale changes 

In terms of the polar coordinates (r, O) in the { plane and angular 
velocity 3-1co, the rotating solution will be represented by functions 

u = u(r, O -  6 - loot), v = v (same) 

the basic equations (1) and (2), under these variable changes, become 

f ( u ,  ~ )  + ~2(zJ ~ b/-]-- (Duo) = 0 (7) 

3~ + co~ + g(u, a~) = 0 (8) 

1/ 

Fig. 6 
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where A is the Laplacian in the coordinates {. Let us agree to drop the 
tildes from the symbol ~7. 

To lowest order in the small parameter 3, (7) gives f (u ,  0 ) =  0, which 
means that u = h+ (0) (recall that now v* = 0). Therefore g = + 1 in (8), and 
one obtains 

av+~ovo+__ 1 = 0  (9) 

for { es 
One seeks solutions such that the interface F between s ( 2  is 

spiral shaped, and is given in two parts: F + ,  described by ~=  h(r) for some 
function h, where r =  I{[, and F_  : ~ = h ( r ) + m  As r--+ 0% we require that 

h(r) = vr + 0(1) (10) 

which guarantees that the spiral is Archimedian, the type usually seen in 
experiments. Here 7 > 0 is the unknown pitch of the spiral far from the 
origin. 

The problem is most naturally written in terms of the shifted polar 
coordinates (r, 0), where 

0 - g -  h(r) 

Defining the function H(r)=-h'(r)/r, one finds that the Laplacian term 
assumes the form 

1 
< 1 (r2H),uo _ 2rHuro + r2H2uo 0 ( 11 ) A I 4 U - -  (ru,), + U o o - -  

r r -  r 

Along with the equation (9), which must hold in the two domains s177 
an interface condition on the boundary F (characterized by 0 = 0 or 0 = 7t) 
separating the two domains must be imposed, in order to have a 
reasonable problem. The correct interface condition can be found by retur- 
ning to the original equation (1) for u, and using it to examine the fine 
structure of the transition that u undergoes on the boundary F. This fine 
structure analysis is accomplished by stretching the angular variable 0 near 
F, i.e., near 0 = 0. Thus, define 

0 
~9 - 6' g(r, •) - u(r, 0), V(r, O) =- v(r, O) 

With these variables, (1) becomes 

l 2 2 - - _  r2 U~q, + r H Uq,, + f ( U ,  6V) ~ (r2H)'U~, 
r 

(5 2 

- 26rHUr~, + &oU~, + 7 (rUr)r = 0 (12) 
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The location of the interface is defined, in the stretched coordinates, as the 
place where U =  0, and the angular variable is adjusted to vanish there: 

U(r, O) = 0 

Expand the solution formally in a series U=U~ " ,  
V= V ~ + ' ,  and substitute into (12). To lowest order, one obtains 

( l ~ + r 2 H 2 )  o +f(uO, o)=o, U O ( r , O ) = O U ~ o  

The solution which matches with the outer solution u =  h_+(0) as 0 -~  _+oe 
is 

V~ ~) = z(p(r) O) 

where Z(s) is the well-known stationary front solution of the problem 

)(' + f ( x ,  O) = O, z(O) =0,  )~(_+ oe) = h_+(O) 

and p(r)- [ r - 2 +  rZH(r) 2] -1/2. Carrying out the solution to the next order 
in 6 involves applying a solvability condition, because the linearized 
operator 

d 2 
L = ~-j + L(z(s), 0) 

with zero boundary conditions at _+ o% has a null space spanned by the 
single function X'(s). This next order problem's solvability condition then 
provides (~~ the appropriate interface condition, which is 

v(r,O)=M({ 1 [r2H(r)]'-co} p(r)+rH(r)p'(r)) (13) 

M being a specific constant. 
Finally, the symmetry condition imposed upon f induces a 

corresponding symmetry condition on the solution: v(r, -O)= -v(r, 0). 
The problem for the spiral can now be stated: Find a function v(r, 0), 

a function H(r), and constants co and 7, satisfying 
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Fife 

The + sign holding for 0e  (0, ~) and the - sign for 0e  (-re,  0), 

(2) v(r, 0+~)= -v(r, O) 

(3) H(r)=7+O(r 2) (r-+oo) 
r 

and (4) Eq. (13). 

An asymptotic analysis of this problem for large distances r from the 
center provides a solution there for every value of co in some interval 
(0, coo]- Formal solutions for small values of r can also be constructed in 
the form of power series in r. 

More mathematical and numerical work needs to be done to answer 
the questions raised by this problem. In particular, an existence theorem 
needs to be provided for it, and a numerical method needs to be devised for 
solving it. It may happen that a solution exists for a range of values of co, 
as is suggested by the large-r expansion. In that case, a method needs to be 
found for deciding which value of co is the preferred one, as experiments 
seem to indicate that a unique spiral, with a unique value of co, is 
associated with each given reagent. 

8. C O N C L U S I O N  

It has been pretty well established that the PC system examined in this 
talk is a realistic model for the spatially distributed BZ reagent under com- 
monly occurring parameter conditions. The analysis of the system is 
straightforward and provides a clear picture of the mechanism behind the 
appearance of fronts, trains, solitary pulses, and target patterns, and 
behind the generation of spirals, under those conditions. In fact, the PC 
model has been remarkable 'successful in reflecting observed phenomena 
(see a discussion of this point in Ref. 34). Spiral-like structures in 3-space 
have been called scrolls by A. Winfree; their generation can also be easily 
understood along these same lines, as resulting from local disturbances of 
plane solitary waves propagating through 3-space. Fully developed spirals 
can likely be understood in this same PC context as solutions of the free 
boundary problem presented in Section 7; more mathematical and 
numerical work should be done on that problem. 

Very possibly other parameter conditions exist for which similar 
spatial patterns can be seen in the BZ reagent, but for which the PC 
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framework is not appropriate; and very likely other excitable biological or 
chemical media, supporting such patterns, may require other models for 
their understanding. Nevertheless, it appears likely that models having 
many of the properties of the one studied here will play a significant role in 
the unraveling of these more complex systems. 
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